Колледж промышленных, информационных технологий и права

Вселенная и Темная материя

Проект по физике:

группы МВ-921

Панфилов Никита Борисович

Научный руководитель:

учитель Котукова Ольга Альбертовна

Кемерово 2023

Содержание

Pitoppor

1 Введение

В начале прошлого столетия астрономы начали замечать, что некоторые звезды и галактики ведут себя иначе чем предсказывала теория, а именно, вращение более отдаленных частей галактик не поддавалось законам небесной механики. Складыва- лось ощущение что масса галактик больше той, что наблюдалась непосредственно. Это положило начало поискам новой, скрытой массы, которую в последействии на- звали *темной материей (dark matter)*.

Впервые термин "темная материя" был употреблен немецким астроном Фрицом Цвикки, который в своей работе по измерению радиальной скорости восьми галактик в скоплении Кома из созвездия Волосы Вероники, опубликованной в 1937 году, показал, что для удержания галактик от разлета полная масса должна превышать видимую более чем в 500 раз.

В конце 60-х годов, астроном Вера Рубин из Института Карнеги, установила, что большинство звезд в спиральных галактиках двигаются по орбитам примерно с оди- наковой угловой скоростью, что свидетельствовало о наличии темной материи. В по- следствии было опубликовано еще несколько независимых работ, которые полностью подтверждали факт существования скрытой массы.

Стоит отметить что позже, в математическую модель Вселенной был введен еще один вид материи (энергии) – *темная энергия (dark energy)*, для объяснение уско- ряющегося расширения Вселенной. В нашей работе мы не будем говорить о темной энергии и ограничимся лишь темной материей.

Согласно нынешним астрофизическим представлением, на долю обычной барионной материи (межгалактический газ, звезды и прочее) приходится менее 5%, на тем- ную энергию ~ 68.5%, на нейтрино около 0.5%, а на темную материю, оставшиеся 26.5%. Таким образом, почти 95% массы-энергии нашей Вселенной состоит из неиз- вестной нам массы, изучение которой имеет фундаментальное значение для космоло- гии, физики элементарных частиц и астрофизики.

Рис. 1: Распределение материи во Вселенной

2 Классификация темной материи

Попытаемся понять на какие категории делится ТМ и по каким свойствам. На се- годняшний день существует несколько способов по тому, на что именно следует раз- делять темную материю, каждый из которых имеет свои недостатки и преимущества. Наиболее общепризнанная классификация — это разделение ТМ по скоростям частиц- переносчиков на горячую, теплую и холодную. Давайте вкратце объясним, что из себя представляет каждая из них.

• Горячая темная материя.

Под горячей ТМ понимается легкие частицы, которые на раннем периоде эволюции Вселенной были в полном соприкосновении с фотонами, электронами, позитронами, и в момент выхода из равновесия, когда взаимодействие прекратилось, они разлетелись со скоростями близким к скорости света. Как показывают рас- четы, масса таких частиц должна быть в 5000 раз легче электрона. Подходящим кандидатом на эту роль являются нейтрино.

На сегодняшний день горячая ТМ практически исключена, ввиду того, что она противоречит крупномасштабной структуре Вселенной.

• Холодная темная материя.

К холодной ТМ относится частицы, которые в раннюю стадию Вселенной отщепились от плазмы с нерелятивистскими скоростями. В отличии от горячей, холодная модель с хорошей точностью описывает крупномасштабную структу- ру Вселенной с точки зрения космологии. Хотя, в некоторых деталях она также не соответствует астрономическим наблюдениям.

Переносчиками данного вида материи обычно выступают сверхмассивные ча- стицы, с массами от десятков ГэВ до нескольких ТэВ. Основным кандидатом на данную роль являются WIMP-ы (Weakly Interactive Massive Particles) — сла- бовзаимодействующие массивные частицы.

• Теплая темная материя.

На нынешней день наиболее подходящей является теплая ТМ, в которой недостатки холодной ТМ уже устранены. Частиц данной категории имеют среднюю скорость между холодной и горячей, хотя и в ранней стадии они также были ре- лятивистскими. Обычно к теплой ТМ относят легкие частицы, массы которых в 100 раз меньше массы электрона.

Основным кандидатом в данной категории является стерильное нейтрино с массой в диапазоне 1 эВ - 10 кэВ.

3 Свидетельства существования темной материи

Темная материя (TM) — это особый вид материи, которые не только не

испускает электромагнитное излучение, но и не взаимодействует с ним вовсе, что не позволя- ет проводить прямые наблюдения. Однако, эта материя проявляет себя в гравитаци-

R HOPPOF

онном взаимодействие, что позволяет обнаружить ее экспериментально. Перечислим основные свойства ТМ:

- Темная материя, так же, как и обычная барионная материя концентрируется в определенных сгустках (обычно вблизи барионной).
- По астрономическим наблюдения на нынешний день, считается что TM является нерелятивистской.
- ТМ в большинстве случаев скапливается в местах скопления обычной материи.
- TM не взаимодействует с обычной материей, кроме того, как выяснилось она и сама с собой практически не взаимодействует [1].
- ТМ должна быть подобна жидкости (никаких дискретных образований пока не обнаружено).

Все выше перечисленные свойства создают ряд трудностей в обнаружении темной материи и поиска ее частиц-переносчиков.

3.1 Галактические ротационные кривые

Одним из наиболее наглядных доказательств существования ТМ служат ротационные кривые — зависимость скорость вращения звезд и газа в галактике от расстояния до центра этой галактики.

Рассмотрим спиральную галактику, т.е. скопление звезд и газа в форме сплющен- ного диска. Воспользуемся законом Кеплера: масса M(r) внутри скопления радиуса r и скорость вращения v(r) на расстояние r от центра галактики, описывается следу-ющим соотношением:

$$v^2(r) = \frac{G \cdot M}{r} \frac{(r)}{r}$$

где G — гравитационная постоянная, а M(r) имеет вид:

$$\int r$$

где $\rho(r)$ — распределение плотности вещества.

В области за наблюдаемым/галактическим диском масса \approx и скорость вращения будет ~1/ r

Но наблюдения противоречат этой зависимости. На деле мы получаем, что с удалением от центра галактики, скорости почти не уменьшаются v(r) const, в чем можно убедиться на примере галактики M33 [2].(Рис.2)

Помимо галактики МЗЗ были рассмотрены сотни спиральных галактик, для которых были получены схожие картины.

Рис. 2: Экспериментальная ротационная кривая для спиральной галактики МЗЗ (точки) по сравнению с лучшей подгонки модели (сплошная линия). Кроме того, показано вклад гало (пунктир с точкой), звездный диск (короткая пунктирная линия) и вклад газа (длинный пунктир).

Из ротационных кривых для галактик следует, что темная материя почти полностью доминирует над видимой.

В добавок можно рассмотреть вращение холодного нейтрального водорода во внеш- ней области. Для этого проводится измерение эмиссии на длине волны 21 см с по- мощью радиотелескопов. В результате вращения галактик происходит доплеровский сдвиг линии 21 см, что позволяет определить скорость вращения газа. Исследова- ния показали, что скорость вращения водорода, так же, как и звезд, практически не меняется и остается постояной, что является еще одним фактором в пользу темной материи.

3.2 Гравитационное линзирование

Рис. 3: Иллюстрация принципа эффекта гравитационного линзирование

e itop pof

Метод гравитационного линзирование заключается в явлении связанным с полевыми уравнениями ОТО (общая теория относительности), а именно, в отклонении электромагнитного излучения в близи массивных тел. Как правило для заметного ис- кажения изображения нужны массы порядка размера галактик или их скоплений. В близи же менее массивных тел, таких как звезды, отклонение луча происходит на очень малые углы, и удается заметить лишь кратковременное увеличение яркости (вспыш- ку). Если объект имеет высокую яркость, то заметить такое изменение практически невозможно. Если же объект недостаточно яркий или же не виден вовсе, то такая кратковременная вспышка вполне может наблюдаться. События такого типа назы- ваются микролинзированием.

С помощью космического телескопа Hubble было получено изображение "кольца" темной материи в скоплении галактик С1 0024+17 [4]. На сегодняшний день это является одним из наиболее убедительных и наглядных доказательств существова- ния темной материи. В данном случае скрытая масса участвует в роле гравитационной линзы, что объясняет наличие мнимых изображений от одних и тех же объектов и уве- личение яркости оригинального источника.

Рис. 4: Темное кольцо на изображении скопления галактик Cl 0024+17 было иденти- фицировано с темным веществом. Само изображение было построено с использова- нием информации, полученной от орбитальной обсерватории «Хаббл», а происхож- дение кольца связывается со столкновением двух гигантских галактических класте- ров [?].)

3.3 Галактические скопления

Теперь рассмотрим скопления галактик, или кластеров. Чтобы найти суммарную их массу используют теорему о вириале:

$$2(T) + (U) = 0$$

где *T* — кинетическая энергия, а *U* - потенциальная, которые определяются следую- щими соотношениями для *N* галактик:

$$\begin{pmatrix} T \\ mv \end{pmatrix}^{2} = N \\ \begin{pmatrix} T \\ mv \end{pmatrix}^{2} = N \\ \begin{pmatrix} T \\ r \end{pmatrix}, \quad \langle U \rangle = -\frac{1}{2} GN \left(N - \frac{\langle m \rangle}{\langle r \rangle}\right)$$

Учитывая, что N = M u (N1) N, для динамической массы получаем следую-щую оценку:

$$M \frac{2 \langle v^2 \rangle \langle r \rangle}{G}$$

Таким образом, измеряя величины *r* и *v* можно вычислить *M*. Для скопления Комы, к примеру, с неопределенностью в фактор два получается следующее значение [5]:

$$\frac{M}{L} \approx 300 h_{L}^{\text{MJ}}$$

где h = H/100- безразмерная постоянная Хаббла.

Следует отметить, что данные оценки проводились при некоторых условиях теоремы о вириале: замкнутая система находится в механическом равновесии и произведено усреднение по длительному периоду времени. Но наши наблюдения нельзя назвать усредненными по длительному периоду времени и, вообще говоря, скопления галак- тик не являются замкнутыми системами, а достигли ли они состояние равновесия или нет, пока неясно.

3.4 Количественный вклад темной материи

Определение количественного вклада всей гравитирующей материи производится на основе совершенно различных эффектов в космологии. Это гравитационное линзирование, описанное нами выше, наблюдение галактических скоплений при разных красных смещениях, сравнение теории образования крупномасштабной структуры Вселенной с наблюдениями и данные по угловым флуктуациям микроволнового излучения [6].

В последнее десятилетие были проведены эксперименты на SDSS (Sloan Digital Sky Survey) [9], WMAP (Wilkinson Microwave Anisotropy Probe) [8] и 2dFGRS (Two- degree-Field Galaxy Redshift Survey) [7], которые позволили с высокой точностью определить космологические параметры. Эти данные хорошо описываются Вселен- ной Фридмана (космологическая модель, удовлетворяющая полевым уравнениям ОТО), в которой на долю нерелятивистской материи приходится ≈ 31.5%, а на темную энер- гию с отрицательным давлением ≈ 68.5% [25]:

$$\Omega_M = 31.5^{+0.017}_{-0.016}, \qquad \Omega_{\Lambda} = 68.5^{+0.017}_{-0.016}$$

где $\Omega = \rho/\rho_c$ — отношение средней плотности Вселенной к критической.

Материю во Вселенной вполне возможно описать через три параметра: постоян-

ную Хаббла, плотность материи и плотность барионов соответственно:

$$h = 0.673(12), \quad \Omega_M h^2 = 0.1198(26), \quad \Omega_B h^2 = 0.02207(27)$$

e itop pof

Таким образом, на барионную материю приходится ~ 5%, на ТМ ~ 26.5% и на ТЭ ~ 68.5%.

Также стоит отметить, что около двух лет назад международная группа ученых из DES (Dark Energy Survey) начала составлять карту распределения темной материи. Эта карта будет покрывать около 13 % видимого небосклона, однако ее отличает бес- прецедентная подробность. Первые результаты работы группы DES были представ- лены в виде фрагмента карты в 0.4 % от видимой части (Puc.5) [29]. По предваритель- ным оценкам, работы продлятся еще около трех лет.

Рис. 5: Фрагмент карты созадавемой группой DES. теплые оттенки цвета соответствуют высокому числу галактик, а пустоты между ними обозначены голубым цветом. Черными кружками показаны кластеры галактик.

4 Кандидаты на роль частиц темной материи

В итоге, в современной физике космоса, возникла довольная странная ситуация: ко- личественный вклад темной материи во Вселенной определен с достаточной точно- стью, но саму природу ТМ мы так и не понимаем. На данный момент частицы ТМ пока не были обнаружены, поиск этих частиц является одной из самых сложных проблем стоящей не только перед космологией, но и перед физикой частиц и астрофизикой. Т.к. наличие ТМ доказывается лишь ее гравитационными свойствами, то предпри- нимались попытки создать модифицированные теории гравитации без ТМ, такие как MOND (Модифицированная ньютоновская динамика), космологическая постоянная и гравитационная постоянная зависящая от времён [5]. Но все эти теории имеют ряд

R HOPPDF

недочетов, так что на данный момент лучше объяснением гравитационных аномалий является наличие ТМ. Рассмотрим некоторых кандидатов на роль частиц темной ма- терии.

4.1 Нейтрино Стандартной модели

После экспериментов по осцилляции ускорительных [15], атмосферных [14] и солнечных [13] нейтрино было полностью доказано что у этих частиц ненулевая масса, следовательно, они должны вносить вклад в скрытую массу. На нынешней момент, нейтрино — единственная частица в кандидаты на ТМ, которую можно зарегистриро- вать в эксперименте.

В отличии от других кандидатов, у нейтрино есть ряд преимуществ: их можно непосредственно наблюдать в экспериментах, т.е. доказан факт их существования и известна их распространенность в нашей Вселенной.

Нейтрино являются фундаментальными фермионами со спином 1/2, электрически нейтральны, имеют 3 поколения — *г*, *µ*, *е* и относятся к горячей ТМ, т.к. ее энергия при выходе из равновесия многократно превышает ее массу. Такие нейтрино могут быть самыми распространенными частицами во вселенной, после реликтовых фото- нов. Плотность числа состояний нейтрино, на данный момент, определяется следую- щим соотношением [18]

$$n^{0} + n^{0} \approx$$

 $3 T^{0} n^{0} \approx 112 \text{ cm}^{-3}$
 $v v^{-3} \sqrt{\frac{0}{Y}} v$

где n_v^0 , n_v^0 , n_v^0 соответственно плотности реликтовых фотонов, нейтрино и антинейтрино в современную эпоху. Нейтринная плотность легких нейтрино связано с фотонной плотностью следующим выражением:

$$n^{0} = \frac{3}{3} n^{0}$$
, $n^{0} \approx 400 \text{ cm}^{-3}$

Получаем, что количество нейтрино должно превосходить барионную материю в 10⁹ раз.

Для определения массы нейтрино проводился целый рад экспериментов по исследованию энергетического спектра электронов при β - распаде трития. Наиболее точ- ными оказались эксперименты, проводимые в г. Троицк [17] и г. Майнц [19], которые дали следующие оценки для верхней границы массы электронного нейтрино:

$$m_v < 2.05 \ \exists B, m_v < 2.3 \ \exists B$$

Из полученных данных для верхней границы масс нейтрино следует ограничение на полную реликтовую плотность для этих частиц [25]:

$$\Omega_v h^2 < 0.0025$$

Это ограничение показывает, что нейтрино СМ не может преобладать в ТМ, несмот- ря на их большое количество в сравнении с барионной материей. Даже учитывая этот факт, нейтрино по-прежнему остается одной из самых важных частиц в космологии и физики элементарных частиц.

e itop pof

4.2 Сверхмассивные нейтрино

Массивные нейтрино уже не являются частицами Стандартной модели. Согласно данным LEP [20], по измерению ширины распада Z^0 - бозона, существует только три типа легких нейтрино (*t*, μ , *e*), которые были рассмотрены нами выше и исключается существование тяжелых нейтрино вплоть до 45 ГэВ.

Были предложены несколько моделей существования сверхмассивных нейтрино, но все они были вне рамок СМ и предполагали массы от 45 ГэВ до 1 ТэВ.

Сверхмассивные нейтрино относятся к частицам холодной материи. При их наличии началось бы ранее гравитационное сжатие материи, т.е. происходило бы образо- вание более мелких структур. В дальнейшем, уже за счет сжатия мелких структур в сгустки, началось бы образование скоплений и суперскоплений галактик [5].

4.3 Стерильное нейтрино

Стерильные нейтрино (СН) впервые были упомянуты более 20 лет назад в работе [16]. Модели с данными частицами активно развиваются и классифицируются как расши- рения Стандартной модели физики элементарных частиц.

Активные попытки в изучении CH объясняется тем, что введение в CM стерильных нейтрино позволяет решить ряд основных проблем космологии и физики элементарных частиц.

Сами СН не участвуют в слабых взаимодействиях, однако они могу смешиваться с активным нейтрино (нейтрино СМ), что обуславливает наличие массы у последнего и смешивание нейтрино разных ароматов (*г*, *µ*, *e*) между собой, которое в свою очередь и вызывает осцилляции. Для объяснения экспериментов по осцилляции нейтрино до- статочно внедрить в СМ два новых фермиона майроновского типа, при этом, изменяя значения модельных параметров можно не только объяснить осцилляции, но и бари- онную асимметрию Вселенной. В таком случае, только два из трех активных нейтрино будут обладать массой. Для придания массы всем трем нейтрино СМ нужно также три стерильных нейтрино. При такой реализации, для некоторой области пространства легчайшее из стерильных нейтрино окажется долгоживущим и сможет претендовать на роль частиц темной материи.

Основным параметром является масса СН. На данный момент, еще четко не опре- делено максимальное и минимальное значение масс, они могут принимать значения от самых малых ~ 1 эВ, вплоть до значений ~ 10¹⁵ ГэВ. Есть несколько групп масс СН, в зависимости от ожидаемых феноменологических проявлений, но нас интересует лишь область от 1 - 10 кэВ, СН с данной массой образуют горячую темную материю, о ко-торый мы уже упоминали выше.

В относительно недавней работе по исследованию скоплений галактик Эзрой Булбулом из Гарвард-Смитсоновского центра астрофизики и Алексеем Боярским, представляющим Лейденский университет, были обнаружены неизвестные линии спектра (Рис.6), которые могут соответствовать распаду СН. [11] В теории, стерильное нейтрино может, хотя и очень редко, распадаться на "обычное" нейтрино и фотон. При этом каждый из продуктов распада унесёт с собой половину энергии предка, то есть линии в районе 3,52 – 3,56 кэВ могут указывать на обнаружение таких распадов сте- рильного нейтрино с массой в интервале 7,04 – 7,12 кэВ. Однако, никаких поспешных выводов ученые делать не берутся, ибо еще толком не ясно, что именно они нашли.

R HOPPOF

Рис. 6: Графики показывают энергетическую зону (3 - 4 кэВ), где возникает новая спектральная характеристика. Красные линии — избыток излучения, синнии линии

общая модель излучения с Гауссианами других источников.

4.4 Аксионы

Еще один кандидат на роль скрытой массы — аксионы. Это псевдоскалярная гипоте- тическая частица, постулированная в 1977 г. в связи с нарушением СР-инвариантности в КХД (квантовая хромодинамика). Масса аксиона выражается следующим образом [5]:

$$m_{a} = \frac{z}{1+z} \frac{f_{\pi}m_{\pi}}{f_{-}/N_{F}} \sim 0.62 \frac{10^{7} \Gamma \Im B}{P_{Q}/N_{F}} \Im B,$$

где $z = m_u/m_d = 0.56$, $m_\pi = 135$ МэВ и $f_\pi = 93$ МэВ.

В начале предполагалось, что масштаб нарушения данной симметрии совпадает с электрослабым масштабом и масса аксиона равна примерно 200 кэВ. Но эксперименты на ускорителях частиц весьма быстро исключили такую возможность. На ны- нешний день считают, что масса аксиона варьируется в интервале от 10^{-5} эВ до 10^{-3} эВ. Однако прямое детектирование пока не дало результатов.

Так же имеются и косвенные способы поиска аксионов, а именно, через свет. Со- гласно теоретическим представлениями аксион может распадаться на два фотона, ко- торые мы уже можем детектировать. Также возможен и обратный процесс, т.е. по- лучения аксиона из света. Из данного свойства следует что аксион хоть и являет- ся "неуловимой" частицей, но не лишен взаимодействия с магнитным полем. В та- ком случае аксионы можно стимулировать для распада на, так называемые, микро- волновые фотоны. Этот метод используется учеными в ADMX (Axion Dark Matter eXperiment). Если аксион окажется частицей TM, это даст еще один рывок в понима- нии и изучении скрытой массы.

4.5 Слабовзаимодействующие массивные частицы

Мы добрались до лидирующего кандидата на роль таинственной массы, а именно,

WIMP-a (Weakly Interacting Massive Particle). К вимпам относятся частицы, кото- рые в момента выхода из равновесия Вселенной имели плотности соответствующие

Pitop PDF

темной материи. Этот класс частиц имеет ряд преимуществ, которые и поставили его впереди "гонки" кандидатов, давайте же перечислим основные из них:

- Вимпы обладают малым сечением аннигиляции, которое и позволяет получить достаточную реликтовую плотность и распространённость¹ во Вселенной, чтобы претендовать на роль ТМ
- Появление вимпов в теоретической физике обуславливается проблемами, связанным с нарушением электрослабой симметрии.
- Требование достаточной плотности означает, что вимпы должны достаточно силь- но взаимодействовать с материей для прямого детектирования.

Также стоит отметить, что вимпы участвуют не только в гравитационном, но и в слабом взаимодействии (что можно было заметить из выше перечисленных свойств). Современная оценка плотности вимпов [12]:

$$\Omega_{WIMP} h^2 = 3 \times 10^{-27} \text{cm}^3 \text{c}^{-1}$$

¹Согласно уравнениям Больцмана, распространённость частица обратно пропорциональна сечению аннигиляции, из чего следует, что чем более частицы слабовзаимодействующая, тем более она распро- странена на данный момент.

Верхняя граница сечения аннигиляции дается условием унитарности (т.е. услови- ем, что вероятность реакции не может быть больше 1), которое для точечных частиц имеет вид $\sigma_{ann}v < 8\pi/m^2$. Из данного условия, учитывая также униварность для $\Omega_W MP h^2$ 1 мы получаем ограничение на массу вимпов: $m_{W MP}$ 340 ТэВ. В даль- нейшем, экспериментальным путем с помощью WMAP, были получены более строгие ограничения:

Отметим также, что к вимпам можно прийти и из расширений СМ, таких как SUSY (Суперсимметрия).

4.6 Суперсимметричные частицы

Суперсимметрия или на англ. SUSY (Supersymmetry) — одно из расширений СМ, ко-торое добавляет новые частицы и взаимодействия. SUSY постулирует наличие связи между фермионами и бозонами и введение для каждой обычной частицы ее частицу- суперпартнера, масса которой превышает массу ее обычного партнера, а спин отли- чается на 1/2.

Минимальным суперсимметричным расширением СМ является MSSM (Minimal Supersymmetric Standard Model). MSSM добавляет для всех калибровочных полей фермионных суперпарнетров. Так, к примеру, для бозонов Z^0 и W^{\pm} фермионными су-

перпартенрами являются бино (*B*) и вино (*W*^{*i*}) соответственно. Общее название для всех этих партнеров — *гаугино*. Для фермионов же, партнёрами будут скалярные частицы.

MSSM и CM различаются по R-четности:

$$R = (-1)^{3B+L+2s}$$

где *B* — барионное число, *L* — лептонное число, *s* — спин частицы.

Так для обычных частиц R = +1, для суперпартнеров R = 1. Следовательно, для стабильных SUSY-частиц, сохраняющих R-четность возможна лишь парная анниги-ляция. Легчайшая из данных частиц наиболее привлекательна для кандидата в ТМ. Также, она не должна обладать электрическим и цветным зарядом. Такая частица на-зывается *нейтролино*. Она получается из линейной комбинации суперпартнеров для бозонов Хиггса H^0 , H^0 и Z^0 :

$$x = C_1 B^{-} + C_2 W_3^{-} + C_3 H^{-0} + C_4 H^{-0}.$$

где С_і — некоторые константы.

Существуют теоретические предсказания массы и реликтовой плотности нейтра- лино (Рис.8). Кроме нейтралино другими возможными кандидатами на роль частиц темной материи являются снейтрино и гравитино. Однако, экспериментальные дан- ные полученные в [21] исключают снейтрино из кандидатов в ТМ. Что же касается гравитино, то ввиду наличие лишь гравитирующего взаимодействия, он является не слишком приятным кандидатом для экспериментов по поиску частиц ТМ. Мы рассмотрели вкратце основных небарионных кандидатов на роль частиц на- шей таинственной массы. Явными лидером пока что являются вимпы, но не стоит за- бывать и других, менее популярных, но вполне вероятных кандидатов(Рис.9).

Ritoppf

Рис. 8: Реликтовая плотность нейтралино, как функция от ее массы. Различные цвета точек показывают тип смешивания нейтралино. Горизонтальная серая линия – значение плотности холодной темной материи из измерений WMAP. Рисунок из [12].

4.7 Барионные кандидаты

До сих пор мы рассматривали лишь небарионных кандидатов на роль ТМ. Однако, существуют и теории, которые предлагают экзотических претендентов из барионной материи. Давайте вкратце познакомимся с некоторыми из них.

Массивные компактные объекты гало галактики

Есть предположения о существовании некоторого класса космических объектов, которые ввиду своей малой светимости и малых размеров не могут быть обнаружены визуально. Эти гипотетические объекты получили название MACHOs (Massive Astrophysical Vompact Halo Objects).

После экспериментов на эффекте гравитационного микролинзирования, в которых проводился мониторинг более чем 55 млн. звезд в Большом и Малом Магелланновых Облаках, были получены приблизтельные оценки вклада МАСНОѕ в ТМ. По резуль- татам, общая масса МАСНОѕ в гало галактик составляет лишь 15% от массы гало [27].

Магнитные монополи

Идею о существовании монополей выдвинул Дирак в 1931 для объяснения квантования электрического заряда. Дирак выдвинул гипотезу о существовании частиц с магнитным зарядом *g*, который связан с электрическим следующим образом:

$$ge = \frac{nkc}{n}$$
, $n = 1, 2, ...$

e itop pot

Кандидат	Macca	Источник	Проявление
$\overline{G(R)}$		Неньютонова	ТМ на больших
		гравитация	расстояниях
Космологическая			
постоянная Λ		ΟΤΟ	$\Omega = 1$ без ТМ
Аксион, майорон,	10 ⁻⁵ эВ	КХД; нарушение	Холодная ТМ
голдстоуновский бозон		PQ-симметрии	
Обычные нейтрино	10–100 эВ	GUT-теории	Горячая ТМ
Легкие хиггсино,	10–100 эВ	SUSY/SUGRA	Горячая ТМ
фотино, гравитино,			
аксино, снейтрино			
Парафотон	20–400 эВ	Модифицир. КЭД	Горячая/Теплая ТМ
Правые нейтрино	500 эВ	Сверхслабое взаимодействие	Теплая ТМ
Гравитино и т.д.	500 эВ	SUSY/SUGRA	Теплая ТМ
Фотино, аксино,	~ 1 кэ $f B$	SUSY/SUGRA	Теплая/
зеркальные частицы			Холодная ТМ
гравитино,			
нейтрино Симпсона			
Фотино, снейтрино,	~ 1 Мэ $ m B$	SUSY/SUGRA	Холодная ТМ
хиггсино, глюино,			
тяжелые нейтрино			
Теневая материя	$\sim 1{ m M}$ э ${ m B}$	SUSY/SUGRA	Горячая/
(барионоподобная)			Холодная ТМ
Преон	20–200 ТэВ	Составные модели	Холодная ТМ
Монополь	10 ¹⁶ ГэВ	GUT-теории	Холодная ТМ
Пиргон, максимон,	10 ¹⁹ ГэВ	Теории высших	Холодная ТМ
полюс Перри,		размерностей	
ньюторит, шварцшильд			
Суперструны	10 ¹⁹ ГэВ	SUSY/SUGRA	Холодная ТМ
Кварковые нуггеты,	10 ¹⁵ г	КХЛ.	Холодная ТМ
нуклериты		GUT-теории	
Первоначальные	10 ^{15–30} г	ОТО	Холодная ТМ
черные дыры			
Космические струны,	$10^{8-10} M_{\odot}$	GUT-теории	Образование
доменные стенки	č		галактик боль-
			шого вклада в Ω

Рис. 9: Возможные небарионные виды темной материи, предсказываемые различными теориями [5]. К сожалению, в настоящее время эти теории не в состоянии однознач- но предсказать ожидаемые массы таких частиц. Сокращения: ТМ — темная материя; РО — Печчеи и Квинн; SUGRA — супергравитация; ОТО — общая теория относи- тельности.

Оценка массы монополя, в предположении что его радиус равен радиусу электрона, давала значение в 2.4 ГэВ (для n = 1). Однако поиски на ускорителях в рамках данной гипотезы ни к чему не привели.

Тесная связь монополей и элементарных частиц объясняется теорией великого объединения — GUT (Grand Unified Theory). Согласно GUT масса монополей должна быть порядка 10¹⁷ ГэВ. Что показывает тщетность попыток найти монополи в экс- периментах на ускорителях.

Зеркальные частицы

Идея зеркальных частиц появилась больше полувека назад. Сейчас эти частиц также являются претендентами на роль скрытой массы.

Сама идея "зеркального мира" возникла в результате нарушения СР-симметрии в слабом взаимодействии. Теория заключается в постулировании существования зеркальных партнеров. Масса зеркальных частиц, их заряд и характер гравитационного взаимодействия такие же как и у обычных частиц, отличие лишь в том, что у зеркальных партнеров слабое взаимодействие является правым, а не левым.

Чампы

Массивные заряженные частицы — CHAMPs (CHArge Massive Particles) были пред-ложены в работе [28]. Согласно теории данных частиц, чампы могли бы существовать в виде сверхтяжелого водорода (Z = +1). Тогда как их античастицы (Z = 1) могли бы образовывать связанные состояния с ядрами или протонами в качестве сверхтя- желого изотопа или нейтрона (нейтрочампа).

В многочисленных экспериментах были проведены оценки масс для различных чампов. Результаты работ основывались на динамических моделях галактик, на экс- периментах с космическими лучами, подземных экспериментах и т.д. Эксперименты позволили исключить чампы с массами 10²-10¹⁶ ГэВ, что делает чампы маловероят- ным кандидатом на роль частиц ТМ.

5 Обзор экспериментов

Мы уже поговорили о том, как именно нынешняя физика пришла к вопросу о темной материи и от том, какие частицы могут претендовать на роль этой загадочной массы. Теперь же мы обсудим каким образом ученые пытаются обнаружить, те или иные частицы.

На данный момент проводятся десятки экспериментов по поиску частицы в различных странах. Эксперименты проводятся на земле в различных уголках нашей планеты, глубоко под землей в заброшенных шахтах и даже в космосе (рис.10). Все они отличаются друг от друга методом поиска, зависит это от того, какие именно частицы они хотят обнаружить, будь то аксион, стерильные нейтрино или вимпы. Но, к сожа- лению, ни один из этих экспериментов, на момент написания данной работы, не принес достоверных результатов.

Все эксперименты, по методу детектирования, можно разделить на две большие

группы: косвенные и прямые (рис.11). Прямой метод заключается в том, чтобы регистрировать взаимодействия частиц ТМ в лабораторных условиях. Косвенный же

e itop pof

Рис. 10: Географическое месторасположение установок по поиску частиц ТМ. [10]

опирается на попытки регистрации вторичных продуктов данного взаимодействия (на земле или в космосе). Давайте рассмотрим некоторые из экспериментов и попробуем разобраться в их методиках поиска ТМ.

5.1 EDELWEISS.

EDELWEISS (Expe⁻rience pour DEtecter Les Wimps En Site Souterrain) — французсконемецко-российский эксперимент целью которого является прямая регистрация слабовзаимодействующих массивных частиц (вимпов)². Вимпы очень слабо взаимодействуют с обычной материей (за один год можно получить лишь около десяти случаев рассеяния), поэтому данный эксперимент нужно проводить с очень малым фоновым излучением. Для этого нужно выбрать определённое место эксперимента и соответствующее оборудование.

В эксперименте EDELWEISS предусмотрена активная и пассивная защита для изоляции от естественного фона, также детекторы были расположены глубоко под землей, в подземной лаборатории LSM, на юге Франции, чтобы избежать космогенной составляющей фона. Регистрация вимпов в детекторе осуществляется с помощью криогенных германиевых болометров. Это позволяет одновременно регистрировать два сигнала — тепловой и ионизационный. Сравнение этих двух сигналов позволяет- ся выделить искомые акты взаимодействия на ядре из общего фонового рассеивания

²Стоит заметить, что помимо вимпов, в данном эксперименте осуществлялся и поиск аксионов [23].

Рис. 11: Основные методы детектирования темной материи . [5]

на электронах. Таким способом удалось снизить влияние фонового излучения на че-тыре порядка.

Принцип реализации эксперимента заключается в детектировании ядер отдачи, которые образуются в результате рассеяния вимпов на ядрах атомов обычного вещества (рис.12). На данный момент плотность темной материи в земных пределах составляет около 0.3 ГэВ/см³ [26]. Наличие ТМ в области нашей планеты дает надежду на то, что все-таки удастся зарегистрировать вимпы.

Весь эксперимент можно разделить на три основных этапа, в зависимости от чув- ствительности к вимпам. В EDELWEISS-I (2004) использовались германиевые де- текторы, в количестве трех штук и общей массой около одного килограмма. Это поз- волило определить более точно основные источники фонового излучения и найти спо- соб их нейтрализации. В EDELWEISS-II (2009) уже использовалась 28 детекторов с массой по 320 грамм, что позволило значительно увеличить эффективность работы. EDELWEISS-III — последний реализованный на данный момент этап эксперимента, который имеет уже около 40 детекторов по 800 грамм каждый.

EDELWEISS-I

На данном этапе, как уже отмечалось выше, использовалось всего три германиевых детектора, каждый весом 320 грамм, которые были охлаждены в криостате растворения до 20 мК. Чтобы достичь таких низких температур использовалась смесь из двух изотопов гелия — ³Не и ⁴Не, с процентным содержанием в 10% и 90% соответствен- но. Криостат растворения был выбран потому что с помощью него можно было под- держивать образцы больших размеров при постоянной

температуре на протяжении длительного периода времени (недели и месяцы).

e itop pot

Рис. 12: Прицип детектирования вимпов. Где m_W , V — масса и скорость вимпа, M_N — масса ядра, E_R — энергия отдачи, которая впоследствии и детектируется. [24]

В ходе проведения эксперимента было подтверждено то, что детектор способен одновременно измерять тепловой и ионизационный сигнал от поглощаемых частиц. Ввиду того, что ионизационный выход у электронов выше, чем у ядер отдачи, это поз- воляет отобрать более чем 99.9% фоновых событий от электронов и гамма-квантов при энергиях свыше 15 кэВ [12]. Для еще большей изоляции от фонового излучения, установку покрыли свинцовым щитом, толщиной 15 см, и медью толщиной 10 см. Для защиты от нейтронного фона в эксперименте была предусмотрена защита из поли- этилена толщиной 30 см. Внутри криостата, чтобы снизить радиоактивный фон, элек- троника была размещена под 7-ми сантиметровым барьером из сверхчистого свинца (арехологического), сам же криостат был сделан, по большей части, из сверхчистой меди.

Рис. 13: Фотографии детекторов (слева) и схема экспериментальной установки EDELWEISS-I (справа).

В течение 4-х месяцев удавалось поддерживать стабильное условия детектора. За это время удалось собрать статистику в 62 кг сут. Анализ этих результатов позволил получить самое точное на то время ограничение на сечение вимп-нуклон, хотя почти в тот же год, эксперимент CDMS-II получил в три раза более точные ограничения, благодаря возможности отделения событий электронной отдачи на основе определе- ния времени прихода фонового сигнала [10].

EDELWEISS-II

После окончание экспериментов EDELWEISS-I в начале 2004 года, полученные данные ясно дали понять перспективность подхода с использованием криогенных детекторов на германии. Проблема была лишь в том, что для получения более точных данных нужно было увеличить кол-во детекторов, как следствие, разработать новый криостат растворения. В марте того же года начались работы по подготовке к следую- щему этапу EDELWEISS-II. Новый криостат, разработанный специально для новой установки, мог охлаждать более 120 детекторов до температуры менее 2 мК, с улуч- шенной стабильностью температурного режима до 0.01 мК. Также была значительная повышена защита от фонового излучения нейтронов и космических лучей, с помощью мюонного вето. Во время транспортировки и установки деталей были предприняты соответствующие меры по защите от излучения, в частности от радона.

На данном этапе уже использовались несколько видов криогенных германиевых болометров, однако основным является детектор типа NTD (Nuclear Track Detector) (рис.14,15), использовавшийся еще и на первом этапе эксперимента EDELWEISS.

Рис. 14: Принципиальная схема NTD германиевого болометра, используемого в эксперименте EDELWEISS. [12]

Болометр изготовлен из сверхчистого германия, имеет вид цилиндра диаметром около 7 см, толщиной около 2 см и массой 300-400 грамм. В детекторе предусмотре- ны меры противодействия радиоактивному фону, возникающему из-за загрязненных оправок детектора, в виде охранного электрода на боковой поверхности болометра. Ввиду данных мер по фоновой изоляции, эффективный объем детектора составляет около 60% от объема кристалла. Алюминиевые электроды толщиной в 60-100 нм,

Ritoppf

расположенные сверху и снизу детектора, передают ионизационный сигнал. Между кристаллом детектора и электродом располагается слой из кремния и германия при- близительно в 60 нм, который позволяет избежать эффекта деградации³ детектора и снизить число фоновых поверхностных событий. Из-за работы со сверхнизкими тем- пературами, напряжение на электродах не превышает 10 В. При таком напряжении, длительность сигнала составляет несколько микросекунд.

Температурный сигнал ΔT позволяет определить энергию, которую частица оста- вила в детекторе:

$$\Delta E = C(T)\Delta T$$

где C(T) « T³ — теплоемкость детектора при низких температурах.

Так, при экспериментальных температурах в 20 мК, частица с энергией 10 кэВ вызывает нагрев на величину ~ 1 мкК. Для того чтобы измерить это изменение температуру, используют термистор в виде германиевой пластины объемом 7 мм³, которая приклеена к детектору, и через температурную связь сопротивления находят ΔT :

$$R(T) = R_0 e^{\frac{\sqrt{-T_0/T}}{T_0/T}}$$

где R_0 — параметр термистора (обычно несколько Ом), и T_0 — характеристическая температура (порядка нескольких Кельвин).

Для NTD, при рабочей температуре детектора в 20 мК, сопротивление термистора состовляет несколько миллионов Ом. Длительность теплового сигнала значительно превышает ионизационный и составляет десятые доли секунды.

Мы уже говорили выше о том, что регистрация частиц происходит по двум каналам одновременно. По разнице ионизационного выхода можно различить рассеяние на электроне и ядре, что позволяет отделить электронные случаи из общей массы данных. Но данный способ "отчистки" имеет свою опасность. Из-за того, что на по- верхностном слое детектора заряд от проходящей частицы может собираться не пол- ностью, мы можем получить ложный сигнал. Такие ложные события исключаются с помощью позиционно-чувствительных детекторов двух типов:

- Первый детектор использует двойной слой NbSi. Дискриминировать поверхностные сигналы позволяет сравнительная оценка форм температурного сигнала с разных сторон детектора.
- Второй тип это ID детектор Ge/NTD/INTERDIGIT. При его использовании заряд от поверхностных и объемных событий собирается на противоположных электродах.

Чтобы иметь достоверные данные нужно получить и проанализировать три неза- висимых сигнала от каждого из детекторов. Для этой цели были специально разра- ботаны система методов усиления и оцифровки сигнала. Конфигурация электроники была выбрана с учетом требования к фоновым условиям эксперимента. Энергетиче- ские пороги, с которыми ведется набор данных в ионизационном и тепловом канале, составляют 1.5-3 кэВ. Поиск вимп осуществляется с порога 10-30 кэВ. Конкретный порог определяется из калибровок с у-источником и соответствует подавлению 99.9% электронных событий.

³Данный эффект связан с накоплением объемного заряда в детекторе с течением времени, что влечет за собой ухудшение разрешимости и эффективности сбора заряда детектором.

Biloppor

Рис. 15: Внешний вид NTD германиевого детектора, используемого в эксперименте EDELWEISS. По бокам можно заметить электроды и сверхчувствительный прямоугольной термометр, наклеенный на кристалл. [24]

В результате трехлетней работы EDELWEISS-II (2006-2009) была получена ста-тистика в 240 кг сут. Во время работы, в области поиска вимпов (10-30 кэВ) было зарегистрировано три события. Энергетический спектр и расчетная форма спектра от вимп для сечения рассеяния $\sigma = 10^{-5}$ пб представлены на рис.16. Для получения верх- него ограничения на сечение рассеяния вимп-нуклон при неизвестном уровне фона использовался метод оптимальных интервалов.

Однако количество фонового излучения в NTD детекторах слишком велико, чтобы достичь необходимого уровня чувствительности для регистрации вимпов. По предсказаниям некоторых SUSY моделей это сечение колеблется в области от 10⁻⁸ до 10⁻⁹ пб (пикобар).

Рис. 16: Первые результаты измерений с NTD детекторами в EDELWEISS-II. Слева - фитирование кандидатов на роль WIMP. Справа - полученное ограничение на сечение рассеяния WIMP-нуклон. Синяя и красная линия соответствует анализу данных эксперимента EDELWEISS-II с различными параметрами отбора, черной линией показано ограничение из EDELWEISS-I, сиреневой линией по- казаны результаты эксперимента CDMS, положительный результат эксперимента DAMA обозначен замкнутой зеленой линией. [12]

EDELWEISS-III

На момент написания данной работы, сбор данных EDELWEISS-III еще не закончился, эксперимент начался весной 2014 г. и продолжится по предварительным данным до 2017 года. Он проходит под руководством EURECA (European Research Coordination Agency). Как уже отмечалось выше, на данном этапе количество детекторов возросло до 40, с массой по 800 грамм.

Рис. 17: Финальная установка EDELWEISS-III. [24]

5.2 DAMA/LIBRA

DAMA (DArk MAtter) — это обсерватория для редких процессов (таких как WIMP прямого обнаружения, процессы $\beta\beta$ распада, процессы нарушения запрета Паули, нуклонная нестабильность, поиск солнечных аксионов и другая экзотика) на основе развития и использования различных сцинтилляторов. DAMA включает в себя около полутра десятков низкофоновых установок, расположенных в 100 км от Рима глубоко в толще горы Гран-Сассо (Gran Sasso), в одноименной лаборатории, принадлежащей итальянскому национальному институту ядерной физики (INFN). Этот проект также являлся пионером в исследовании частиц темной материи в галактическом гало.

Перечислим основные установки DAMA [30]:

- DAMA / NaI (~100 кг NaI (Tl)), который собирал данные под землей в течение семи годовых циклов и был выведен из эксплуатации в июле 2002 года.
- DAMA / LXE (~6.5 кг жидкого ксенона, обогащенного либо ¹²⁹Хе или ¹³⁶Хе).
- DAMA / R&D, которая посвящена испытаниям прототипов и относительно ма-

ломасштабных экспериментов.

Pitoppf

- DAMA / Ge, используется в LNGS(Laboratori Nazionali del Gran Sasso) с объ- ектом из германия для выборочных измерений и маломасштабных эксперимен- тов.
- DAMA / CRYS, небольшая установка использующаяся для проверки прототипов и претендовать на детекторы.
- DAMA / LIBRA (~250 кг сверхчистого NaI(Tl)) второе поколение установок DAMA. Введена в эксплуатацию в марте 2003. Собирала данные на протяжении 7 лет до 2010 г, в рамках первой фазы (DAMA / LIBRA-phase1). Результаты были представлены в 2008, 2010 и окончательные в августе 2013. Осенью 2010 была проведена модернизация установки и эксперимент вошел во вторую фазу (DAMA / LIBRA-phase2), который проводят до сих пор.

Далее мы более подробно рассмотрим установку последнего поколения экспери- ментов данной обсерватории — DAMA / LIBRA.

Идея эксперимента

Целью эксперимента DAMA / LIBRA (Large sodium Iodide Bulk for RAre processes) являет поиск частиц ТМ, а именно, самого вероятного кандидата — вимпа.

Согласно гипотезам, если вимпы и существуют, то они должны быть практически повсюду в нашей галактике, формируя "вимповое облако". Таким образом, наша сол- нечная система, вращаясь вокруг центра галактики со скоростью порядка 200 км/сек, должна ощущать встречный "вимповый ветер". Но нельзя забывать также, что и на- ша планета вращается вокруг Солнца со скоростью 30 км/сек, поэтому этот вимповый ветер будет то сильнее, то слабее, в зависимости от годичного цикла (Рис.18).

Рис. 18: Схематическое представление вращения Земли вокруг Солнца . [31]

P HOP PDF

Сами вимпы, как уже отмечалось выше, очень редко взаимодействуют с барионным веществом. Однако, изредка столкновения между атомами барионной материи и вимпами все же происходит. Результатом такого взаимодействия может быть либо передача импульса, либо выбивание электрона, что в свою очередь вызовет испускание фотонов, которые нетрудно зарегистрировать.

Именно за такими редкими годичными вспышками и охотятся участники эксперимента DAMA / LIBRA. Стоит отметить что в предшествующем эксперимента DAMA / NaI были уже обнаружены колебания частоты вспышек, что было интерпретировано участниками эксперимента как вимпы, однако научное сообщество довольно скептично отнеслось к этим данным, ввиду больших погрешностей.

Рис. 19: Схематический вид пассивного щита аппарата DAMA / LIBRA . За пределами рисунка аппарат окружен еще слоем камня в 1 м. [31]

Экспериментальная установка

В качестве материала мишени был выбран монокристаллический йодистый натрий, активированный таллием (сцинтиллятор NaI(Tl)), который имеет ряд достоинств, сре- ди которых [32]: 1) хорошо известная технология изготовления; 2) широкий массовый диапазон регистрации; 3) устойчивость к высоким нагрузкам; 4) процедура калибров- ки осуществима вплоть до кэВ в рабочих условиях; 5) удобный способ эксплуатации и мониторинга; 6) отсутствие микрофонных шумов; 7) высокий световыход — на об- разование одного фотона в нем затрачивается около 25 эВ [36]; 8) нет необходимости повторной очистки или охлаждения / нагревания перед процедурой (что предполагает высокую воспроизводимость, высокую стабильность, и небольт.д.): 9) относительно шие размеры детектора; 10) возможна дискриминация сигнала по форме импульса;

11) экологический чистый; 12) возможность эффективного исследования годовых модуляций во всех интересующих аспектах; 13) высокая чувствительность к кандидатам вимп со спин-независимы (SI), спин-зависимым (SD) и смешанным (SI&SD); 14) сцинтилляционные кристаллы NaI(TI) выращиваются с типичным уровнем содержания калия менее 0,00005%, что позволяет использовать их в низкофоновых применениях [36].

Данный вид детекторов использовался в первом проекте DAMA и используется до сих пор не только в экспериментах по поиску вимпов, но и таких как: 1) поиск спон- танного перехода ядер в сверхплотное состояние; 2) сценарии нарушения принципа Паули в ¹²³I и ²³Na; 3) поиск солнечных аксионов; 3) поиск возможных видимых ка- налов распада нуклона, ди-нуклона и три-нуклона; 4) поиск экзотического вещества;

5) спонтанное излучение тяжелых кластеров и т.д.

DAMA / LIBRA использует около 250 кг сверхрадиочистых детекторов NaI(Tl), в количестве 25 штук по 9.7 кг каждый (объемом 10,2 10,2 25,4 см³), расположенных в кубе 5 на 5 [32]. Вместе с детекторам в кубе размещены ФЭУ со световодами (рис. 20), длинной около 10 см [32], для регистрации вспышек. ФЭУ изготовлены из уль- тра низкофонового стекла. Материалы, использовавшиеся при создании ФЭУ были выбраны на основе различного вида измерений и, в частности, измерения на образ- цах были также проведены с низкофоновым детектором DAMA / Ge, расположенным глубоко под землей.

Рис. 20: Внешний вид низкофонового ФЭУ использующийся в DAMA / LIBRA. [32]

Рис. 21: Установка детекторов внутрь куба. [32]

В DAMA / LIBRA позаботились о высоком уровне защиты от космических лучей и естественного фона, источниками которых являются радиоактивные изотопы. Для защиты детекторов, каждый ФЭУ заключен в герметичный медный кирпич, который поддерживается при небольшом избыточном давлении. Все медные блоки были сде- ланы с целью максимального уменьшения радиоактивности от загрязнителей, в част- ности, от таких как ²³⁸U, ²³²Th и ⁴⁰K.

Сам куб, в котором расположены детекторы также помещен в медный блок. На внешней стороне медного блока, располагается пассивный щит состоящий из бескислородной (OFCH) и низкорадиоактивной меди толщиной в 10 см, далее следует слой из 15 см низкого радиоактивного свинца, 1,5 мм кадмия и слой в 10-40 см из полиэти-лена / парафина (толщиной оставшегося свободного места). Вся конструкция окру-жена слоем камня толщиной в 1 м.(Рис.19)

Результаты эксперимента.

Мы кратко ознакомимся с результатами эксперимента DAMA / LIBRA-phase1 и не будем вдаваться в глубокий анализ. Для интересующихся, с подробным анализом мож- но ознакомиться в [34, 33].

На рис.22 представлена суммарная статистика экспериментов DAMA / NaI и DAMA / LIBRA в энергетическом интервале 2-6 кэВ для одиночных ударов⁴. На график наложена синусоидальная кривая, со следящими параметрами:

$$f(t) = A \cos \omega (t - t_0), \quad t_0 = 152.5 \text{ cyr.}, \quad T = \frac{2\pi}{\omega} = 1 \text{ r.};$$

где *А* — амплитуда модуляции, полученная по лучшему расчету за 13 годовых циклов. Гипотеза об отсутствии модуляции данных могут быть отброшены [37, 38]. После со- ответствующей модуляции и для периода, а также с учетом тех интервалов, в которых ожидается появление частиц ТМ, мы получим следующее [35]:

A = (0.0116 ± 0.0013) чос/кг/кэВ, ± 7) сут. $T = (0.999 \pm 0.002)$ r., $t_0 = (146)$

где чос — число отсчетов за сутки.

Можно заметить, что по сравнению с DAMA / NaI в эксперименте DAMA / LIBRA сильно повысилась точность, что способствует получению более достоверных данных. Для того, чтобы исключить наличие годовых модуляций в другой энергетической области и убедиться в отсутствии значительных изменений в фоне, были проведены соответствующие измерения для энергетических зон не входящие в область поиска частиц TM. Это позволило исключить фоновые модуляции в широком энергетическом диапазоне, на многом меньшем, чем исследуемая область, в которой были зарегистри-

рованы искомые отклонения от фона.

⁴В эксперименте различались два типа сигналов — одиночные (*single-hit*), которые регистриро- вались только одним из 25 детекторов, и множественные (*multiple-hit*), которые регистрировались одновременно несколькими детекторами. Далее, для краткости мы будем называть их ОУ и МУ соот- ветственно.

R HOPPOF

Проведение анализа и расчета данных был необходим только для случаев ОУ. Дей- ствительно, поскольку вероятность того, что частиц ТМ провзаимодействует в несколь- ких детекторах одновременно, крайне мала, то всеми случаями МУ можно пренебречь и анализировать лишь статистику ОУ.

Суммарная экспозиция, включая данные более раннего эксперимента DAMA / NaI (0.29 т год), равна сейчас 1.17 т год, что соответствует 13 годовым циклам. Данная экспозиция на порядки превышает аналогичные экспозиции и является самой боль- шой для всех экспериментов по поиску частиц ТМ. Данные продолжают подтвер- ждать модельно независимое свидетельство существования частиц ТМ в галактиче- ском гало, которые получены на основе годовых модуляций ТМ (8.9*о* доверительная вероятность для суммарной экспозиции).

Рис. 23: Область допустимых значений нуклонного сечения в зависимости от массы вимпа по результатам эксперимента DAMA / LIBRA для трех разных случаев в за- висимости от факторов закалки Na и I: 1)не учитывая направление эффекта [(зеле- ный) вертикально-заштрихованная область]; 2)включая направление эффекта [(си- ний) горизонтально-заштрихованная область)], и 3) без направления, с учетом энер- гетической зависимости фактора закалки Na и I. [35]

Перспективы и DAMA / LIBRA-phase2

После модернизации установки в 2008 г., в ходе которой были улучшены ФЭУ, приобретены новые дискретизаторы, модернизирована система DAQ (Data AcQuisition systems) и др., был проведен последний цикл (седьмой) DAMA / LIBRA-phase1, закончившийся в 2010 г. После еще более значимой модернизации, проведенной в 2010 году, все ФЭУ были заменены на новые с более высокой квантовой эффективностью (QE). Что помогло увеличить чувствительность приборов и достичь высокой точности в области ниже 2 кэВ. Так же некоторые обновления были проведены и в 2012 году.

Участники проекта DAMA / LIBRA постоянно работают с целью: 1) увеличить энергия программного порога эксперимента; 2) улучшить точность исследований ча- стиц ТМ и смежных проблем астрофизики, ядерной физики и физики частиц; 3) ис- следовать другие, более экзотические проблемы. Это требует длительного и тяжелого полного рабочего дня, самоотверженную работу, надежный сбор и анализ очень круп- ных объемов данных, что участники проекта DAMA и делали все это время и будут продолжать, чтобы как можно ближе приблизиться к тайне ТМ.

6 Заключение

В нашей работе мы рассмотрели почему люди начали задаваться вопрос наличием скрытой массы, как именно получилось убедиться в том, что эта масса, называемая темной материей, все-таки присутствует в нашей Вселенной. Так же мы ознакомились с кандидатами на роль этой неизученной материи, которая составляет более четвер- ти всей материи во Вселенной. Рассмотрели некоторые способы регистрации данных кандидатов, на примере двух экспериментов, которые имели весомый вклад в иссле- довании ТМ.

Проведение таких экспериментов, как DAMA и EDELWEISS открывают перспективы в обнаружении частиц темной материи. Активные исследования по изучению TM, неговоря уже о TЭ, помогут нам более ясно понимать что именно из себя представляет наша Вселенная, как происходило рождение нашей Вселенной и что ее ждет в будущем. Эти вопросы являются одними из главных не только в астрофизике и кос- мологии, но и в физике вцелом.

Список литературы

- [1] David Harvey, Richard Massey, Thomas Kitching, Andy Taylor, Eric Tittley "The non-gravitational interactions of dark matter in colliding galaxy clusters"// Science, Vol 347, Issue 6229 (2015)
- [2] Edvige Corbelli, Paolo Salucci "The Extended Rotation Curve and the Dark Matter Halo of M33"(1999) // arXiv:astro-ph/9909252
- [3] "Тёмная материя : сборник материалов"по ред. Ишханова Б.С. (2014) ISBN 978-5-91304-567-6
- [4] M.J. Jee, H.C. Ford, G.D. Illingworth, R.L. White, T.J. Broadhurst, D.A. Coe, G.R. Meurer, A. Van Der Wel, N. Benitez, J.P. Blakeslee, R.J. Bouwens, L.D. Bradley, R. Demarco, N.L. Homeier, A.R. Martel, S. Mei "Discovery of a Ringlike Dark Matter Structure in the Core of the Galaxy Cluster Cl 0024+17"// Astrophys.J.661:728-749,2007 // arXiv:0705.2171
- [5] Кландор-Клайнгротхаус Г.В., Цюбер К. Астрофизика элементарных частиц // М.: УФН, 2000,. - 496 с.
- [6] Космология и элементарные частицы, или небесные тайны. А. Д. Долгов // Фи- зика элементарых частиц и амтоного ядра 2012 Т.43 Вып. 3
- [7] Cole S, Sanchez A. G., Wilkins S ASP Conf. Ser. 379 57 (2007); astroph/0611178
- [8] Spergel D. N. et al. Astrophys. J. Suppl. 170 377 (2007); astro-ph/ 0603449
- [9] Tegmark M. et al. Phys. Rev. D 74 123507 (2006); astro-ph/0608632
- [10] Рябов В. А., Царев В А, Цховребов А М "Поиски частиц темной материи"УФН 178 1129-1164 (2008)
- [11] Горбунов Д С "Стерильные нейтрино и их роль в физике частиц и космоло- гии"УФН 184 545-554 (2014)
- [12] Лубашевский А.В., Результаты поиска WIMP в эксперименте EDELWEISS, Объединённый институт ядерных исследований, Лаборатория ядерных проблем им. В.П.Джелепова, Дубна, 2010.
- [13] Aharmim B. et al. Phys. Rev. C 72 055502 (2005); nucl-ex/0502021
- [14] Adamson P. et. al. (MINOS Collab.) Phys. Rev. D 73 072002 (2006); hep- ex/0512036
- [15] Michael D. G. et al. (MINOS Collab.) Phys. Rev. Lett. 97 191801 (2006); hep- ex/0607088
- [16] Dodelson S, Widrow L M Phys. Rev. Lett. 72 17 (1994); hep-ph/ 9303287
- [17] Lobashev V. M. Nucl. Phys. A 719 C153 (2003)

[18] Dolgov A. D. Phys. Rep. 370 333 (2002); hep-ph/0202122

P HOP PDF

- [19] Kraus Ch. et. al. Eur. Phys. J. C 40 447 (2005); hep-ex/0412056
- [20] Bjorken J. D., Llewellyn Smith C. H. Phys. Rev. D 7 887 (1973)
- [21] Falk T, Olive K A, Srednicki M Phys. Lett. B 339 248 (1994); hepph/9409270
- [22] K.Hagiwara et al., "Review of particle physics", Physical Review D, 66:10001, (2002)
- [23] E. Armengaud, Q. Arnaud, C. Augier, A. Benoit,..., "Axion searches with the EDELWEISS-II experiment"//JCAP 1311 (2013) 067 arXiv:1307.1488
- [24] http://edelweiss.in2p3.fr/Presentation/index.php
- [25] ASTROPHYSICAL CONSTANTS AND PARAMETERS //Revised November 2013 by D.E. Groom (LBNL).
- [26] J.D. Lewin, and P.F. Smith, "Review of Mathematics, Numerical Factors, and Corrections for Dark Matter Experiments Based on Elastic Nuclear Recoil", Astropart. Phys., 6, 87-112, (1996)
- [27] Tisserand P et al. Astron. Astrophys. 469 387 (2007); astro-ph/0607207
- [28] De Rujula A, Glashow S L, Sarid U Nucl. Phys. B 333 173 (1990)
- [29] V. Vikram, C. Chang, B. Jain, D. Bacon and oth. "Wide-Field Lensing Mass Maps from DES Science Verification Data"//arXiv:1504.03002v1
- [30] http://people.roma2.infn.it/ dama/web/det.html
- [31] R. Bernabei (1), P. Belli (1), F. Cappella (1), R. Cerulli (1) and others "Dark Matter search" (2003) // arXiv:astro-ph/0307403v1
- [32] R. Bernabei (1,2), P. Belli (2), A. Bussolotti (2), F. Cappella (3,4), R. Cerulli (5), and others "The DAMA/LIBRA apparatus" (2008) // arXiv:0804.2738
- [33] R. Bernabei et al., Eur. Phys. J. C 62, 327-332 (2009).
- [34] R. Bernabei et al., Int. J. Mod. Phys. A 28, 1330022 (2013).
- [35] R. Bernabei, P. Belli, S. d'Angelo, A. Di Marco, F. Montecchia, F. Cappella, A. d'Angelo, A. Incicchitti, V. Caracciolo, S. Castellano, R. Cerulli, C.J. Dai, H.L. He, X.H. Ma, X.D. Sheng, R.G. Wang, Z.P. Ye "DAMA/LIBRA results and perspectives, Bled 2013"//arXiv:1403.1404
- [36] http://www.azimp.ru/catalogue/Scintillators-crystals1/31/
- [37] R. Bernabei et al., Eur. Phys. J. C 56, 333 (2008)

[38] R. Bernabei et al., Eur. Phys. J. C 67, 39 (2010).

1 Введение

2 Классификация темной материи

2

3

3	Свидетельства существования темной материи			
	3.1	1 Галактические ротационные кривые		
	3.2	Гравитационное линзирование	5	
	3.3	Галактические скопления	6	
	3.4	Количественный вклад темной материи	7	
4	Кандидаты на роль частиц темной материи			
	4.1	Нейтрино Стандартной модели	9	
	4.2	Сверхмассивные нейтрино	10	
	4.3	Стерильное нейтрино	10	
	4.4	Аксионы	11	
	4.5	Слабовзаимодействующие массивные частицы	11	
	4.6	Суперсимметричные частицы	13	
	4.7	Барионные кандидаты	14	
		· · · · · · · · · · · · · · · · · · ·		
5	Обз	ор экспериментов	16	
	5.1	EDELWEISS.	17	
	5.2	DAMA/LIBRA	23	
		XOX		
6	Зак	лючение	29	
_			~ ~	
Литература 3				